End-to-end differentiable learning of turbulence models from indirect observations

نویسندگان

چکیده

The emerging push of the differentiable programming paradigm in scientific computing is conducive to training deep learning turbulence models using indirect observations. This paper demonstrates viability this approach and presents an end-to-end framework for neural networks learn eddy viscosity from observations derived velocity pressure fields. consists a Reynolds-averaged Navier–Stokes (RANS) solver neural-network-represented model, each accompanied by its derivative computations. For sensitivities Reynolds stress field, we use continuous adjoint equations RANS equations, while gradient network obtained via built-in automatic differentiation capability. We demonstrate ability true underlying closure when one exists synthetic data linear nonlinear closures. also train model measurements direct numerical simulations which no exists. trained deep-neural-network showed predictive capability on similar flows.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

End-to-End Differentiable Adversarial Imitation Learning

Generative Adversarial Networks (GANs) have been successfully applied to the problem of policy imitation in a model-free setup. However, the computation graph of GANs, that include a stochastic policy as the generative model, is no longer differentiable end-to-end, which requires the use of high-variance gradient estimation. In this paper, we introduce the Modelbased Generative Adversarial Imit...

متن کامل

End-to-end Differentiable Proving

● Architecture allows us to induce rules of predefined structure ● We can, for instance, incorporate the inductive bias of a transitivity relationship in the knowledge base θ1(X,Y) :θ2(X,Z), θ3(Z,Y). ● θi are vector representations for unknown predicates ● They can be learned like all other vector representations ● They can be decoded at test time by finding the closest known relation using the...

متن کامل

the aesthetic dimension of howard barkers art: a frankfurtian approach to scenes from an execution and no end of blame

رابطه ی میانِ هنر و شرایطِ اجتماعیِ زایش آن همواره در طولِ تاریخ دغدغه ی ذهنی و دل مشغولیِ اساسیِ منتقدان و نیز هنرمندان بوده است. از آنجا که هنر در قفس آهنیِ زندگیِ اجتماعی محبوس است، گسترش وابستگیِ آن با نهاد ها و اصولِ اجتماعی پیرامون، صرفِ نظر از هم سو بودن و یا غیرِ هم سو بودنِ آن نهاد ها، امری اجتناب ناپذیر به نظر می رسد. با این وجود پدیدار گشتنِ چنین مباحثِ حائز اهمییتی در میان منتقدین، با ظهورِ مکتب ما...

End-to-end Training of Differentiable Pipelines Across Machine Learning Frameworks

In this work we present a unified interface and methodology for performing endto-end gradient-based refinement of pipelines of differentiable machine-learning primitives. This is distinguished from recent interoperability efforts such as the Open Neural Network Exchange (ONNX) format and other language-centric crosscompilation approaches in that the final pipeline does not need to be implemente...

متن کامل

Path Integral Networks: End-to-End Differentiable Optimal Control

In this paper, we introduce Path Integral Networks (PI-Net), a recurrent network representation of the Path Integral optimal control algorithm. The network includes both system dynamics and cost models, used for optimal control based planning. PI-Net is fully differentiable, learning both dynamics and cost models end-to-end by back-propagation and stochastic gradient descent. Because of this, P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Theoretical and Applied Mechanics Letters

سال: 2021

ISSN: ['2589-0336', '2095-0349']

DOI: https://doi.org/10.1016/j.taml.2021.100280